
Architectural
verification
of advanced
storage
controllers

by S. S. Soult

The architectural complexity of advanced
storage controllers has increased to a point at
which architectural verification methods based
on document inspections and reviews are no
longer effective. To facilitate the architectural
verification process, a high-performance
simulator (TurboSim) has been developed for
architectural-level verification. The TurboSim
application includes a set of architectural-
level models, which represent essential
architectural components, and an automatic
test case generator (ATG). The TurboSim ATG
is used to generate realistic representations of
customer direct access storage device (DASD)
track data. The track data are used to drive
different TurboSim simulation scenarios.
After demonstrating its effectiveness as an
architectural verification tool, TurboSim was
enhanced to support the automatic generation
of hardware test cases. These hardware test
cases are used to ensure that the hardware
implementation matches architectural
specifications.

Introduction: The architectural development
and verification process
An essential aspect of the advanced storage controller
architectural development and verification process is

architectural verification. The overall process is shown
schematically in Figure 1. The individual steps required
are described in the following subsections.

Initial draft
The development of an advanced storage controller
subsystem architecture is initiated by a small group of
developers that has been organized as an architectural
team. The team develops an initial draft of the
architecture under the direct supervision of a chief
architect, who is responsible for the overall design and
implementation of the architecture. He is responsible for
ensuring that the members of the architectural team
convert the architectural concepts into prose descriptions
that are clear, concise, and accurate.

The chief architect must ensure that the architecture is
unified and possesses conceptual integrity. The importance
of maintaining the conceptual integrity of an architecture
is discussed by Brooks [l], who states that “Conceptual
integrity in turn dictates that the design must proceed
from one mind, or from a very small number of agreeing
resonant minds.”

Architectural revision
The initial draft of the architecture is taken through
several iterations by the architectural team as it is refined.
The initial development of an advanced storage controller
subsystem architecture can take several months to
complete.

r .

reproduction i? done without alteration and (2) the Journol reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,
ULopyright 1996 by International Business Machines Corporation. Copylng in printed form for private use i? permitted without payment of royalty provided that (1) each

of this paper may he copied or distributed royalty free without further permission by computer-based and other Informallon-~ervlce system? Permission to republish any other
portion of this paper must he obtained from the Editor.

0018-8646/961$5.00 0 1996 IBM

IBM .I. KES. DEVELOP. VOL. 40 NO. 6 NOVEMBER 1996 S. S. SOULT

Initial draft

DART review
of FCRs

Architectural
Execute verification

simulation
scenarios + implementation

Hardware design
feedback (FCRs) *

Generate '7 Hydwye venflcatlon
hardware Hardware feedback (FCRs)
test cases
via TurboSim

verification

release

1 Architectural development and verification process.

Architectural review
After the architectural team completes the initial draft of
the architecture, it is made available for general review.
A formal document review is used to uncover problems
in the initial draft, and these are resolved by the
architectural team during the development of the
final draft of the architecture.

After the final draft is completed, a formal acceptance
review is conducted, and any remaining problems are
addressed before the first edition of the architecture is
published. The document is placed under formal change
control after the first edition is published.

Formal change requests
After the architecture is placed under formal change
control, a Formal Change Request (FCR) process is used
for all functional changes to the architecture. Advantages

the FCR process include the following:

The FCR process tends to eliminate misunderstandings
and misinterpretations of the architecture by people
outside the core architectural development team. This
reduces the number of problems written against the
architecture.
FCRs are placed on a system conference disk that is
easily accessible by all advanced storage controller 624

S. S. SOULT

project developers. This ensures that they are kept
informed of proposed architectural changes.

3. The FCR process provides an opportunity for qualified
commentators other than the members of the
architectural team to participate in the development,
review, and enhancement of the architecture.

4. The FCR process also provides a means for processing
the FCRs by the Design and Review Team (DART) in
a timely manner. The DART is a small independent
group of individuals who need not be members of the
architectural team.

Architectural verification
After the initial draft of the architecture is completed
by the architectural team, the architecture is verified.
Because of the tremendous complexity of recent advanced
storage controller subsystem architectures, traditional
document inspection and review methods are inadequate
for architectural verification. For example, some of the
subsystem data transformations are so complex that it is
no longer practical to check them by hand.

One approach to solving the problem of checking very
complex architectures is to build a set of software models
of the architecture and then execute them. The principal
purpose behind the development of the TurboSim
application was to provide a simulation environment
for models written at the architectural level.

A similar approach had been used previously for the
development of the Systems Network Architecture (SNA).
Smith and West' found that the direct implementation of
an architecture solves two important problems [2]:

1. It determines what constitutes an implementation of

2. It can be used to test whether a particular
the architecture.

implementation complies with the architecture.

Hardware design and implementation
As essential elements of the architecture are verified, the
hardware design and implementation can proceed. With
careful planning and prioritization, the verification, design,
and implementation can proceed as parallel activities,
rather than being done sequentially.

are written and presented to the DART. FCRs that are
accepted by the DART are incorporated into the
architecture and then reviewed and verified as part of the
TurboSim modeling effort.

When problems are found with the architecture, FCRs

1 One of the principal dlffcrences between the approach taken by Smith and West
and ours is that they used a special language, the Format And Protocol Language
(FAPL), to write their models. Rather than using a specialized modeling language,
we decided to use a modern Ob~ect-Oriented Programming (OOP) language,
C + + , to write our models. One of the advantages of using C++ as a modeling
language I S that i t provides opportunitles for code reuse during the development of
product microcode.

IBM J. RES. DEVELOP. VOL. 40 NO. 6 NOVEMBER 1 996

Hardware ver$cation
To ensure that the hardware implementation is correct,
a means must be provided to compare the results of
architectural simulation with the results produced by the
hardware. We accomplished this by enhancing the
TurboSim models to support the automatic generation of
Subsystem Test case Language (STL) hardware test cases.
By using the architectural-level models for hardware test
case generation, we discovered not only hardware
implementation problems but some architectural problems
as well. The types of architectural problems found during
this phase tended to be related to ambiguous, incomplete,
or missing parts of the architecture.

Overview of TurboSim

Characteristics
TurboSim is a high-performance simulator designed
primarily for architectural verification. There are two
different versions of TurboSim, which run under different
operating systems and on different hardware platforms:

TurboSimiDOS runs under DOS on an IBM Personal
Computer (PC); it is used primarily for code
development, architectural verification, and education
and training purposes.
TurboSimiAIX runs under AIX@ on an IBM RSi600OTM
server. TurboSimiAIX is used for essentially the same
purposes as TurboSimiDOS, but in addition it is used
by the hardware test case writers for STL test case
generation. The STL test cases have been used primarily
for hardware verification. However, they have also been
used in a limited way for software verification.

The TurboSim code is written in the C++ programming
language, which is an excellent language for constructing
simulation models. During the development of C + +,
Bjarne Stroustrup relied heavily on his prior experience in
building a simulator while he was at Cambridge [3].
Therefore, the C+ + programming language has many
attributes and features that make it an excellent choice for
building the TurboSim models.

The data structures described in the architecture have
been constructed as accurately as possible, and have been
implemented as C + + classes’ in order to take full
advantage of Object-Oriented Programming (OOP)
techniques.

A simple user interface technology enables the
TurboSim application to be ported across different
operating systems. The different TurboSim ports use the
same User Interface (UI) technology and have the same

A C + + “class” is a language construct which allows the programmer to
encapsulate data members and the member functions (or methods) that operate on
the data A good introduction to C + + classes can be found in [4].

operational characteristics. The TurboSim user interface
conforms to the entry model guidelines specified in [5].

contained in TurboSim track data files (TDFs). Each track
of data contained within a TDF is considered to be a test
case. TDFs are normally generated within TurboSim. If
desired, they can be edited with a standard text editor.
The ability to generate TDFs automatically and then use
them to run simulation scenarios represents a very
powerful Automatic Test case Generation (ATG)
capability.

Customer data are represented by data patterns

The TurboSim application supports both batch and
interactive modes of operation. The default mode of
operation is the interactive mode. To run the application
in batch mode, a batch flag command-line argument is
specified by the user. The TurboSim application command
line arguments are as follows:

The Flag command-line argument is optional and is used
to specify the program mode of operation. The various
modes of operations are batch (background), debug, and
interactive (foreground).

be used. This file must be in a specific format to be
recognized by the program. The TrkFile argument must
be specified if a LogFile argument is to be specified.

simulation log file to be used. If the LogFile argument is
not specified, the name of the simulation log file will be
constructed from the TDF name.

The TrkFile argument specifies the name of the TDF to

The LogFile argument specifies the name of the

The TrkFile and LogFile arguments are normally specified
for batch jobs. This permits the user to use different file
names for batch jobs which are run consecutively.
However, the TrkFile and LogFile arguments can be
specified for the other modes of operation. The arguments
then specify the default names used in the menus for the
TDF and simulation log files.

sensitive help, including some of the information
contained in the TurboSim User’s Guide, which can
be either be viewed on-line or printed.

Most of the TurboSim menus and displays have context-

TurboSim features
The TurboSim primary menu lists options in the sequence
that a user would normally follow when using the
TurboSim application:

1. Build a track data file.
2. Run a specific simulation scenario.
3. Examine the results of the simulation scenario.
4. If desired, build STL test cases.

These features are more completely described in the
following subsections.

Build track data file
The “build track data file” feature is used to build a TDF.
The TDF contains the track information normally
transferred to the subsystem by the system via the channel
interface. The TDF information is required to run a
TurboSim simulation scenario. Since TDFs must conform
to a specific format in order to be recognized by the
simulator, users should always use the TurboSim build
track data file feature to construct an initial version of a
TDF. After a TDF has been constructed, it can be
modified with an ordinary text editor.

To stress certain boundary conditions within the
architecture, it is essential to be able to build specialized
TDFs by hand. Handcrafted TDFs have been very
effective in uncovering architectural problems. This finding
is in accordance with work done by Cross et al. [6] , who
concluded that random testing by itself was not adequate
for exposing errors. However, when it was combined with
boundary and special value (error statistics by volume, or
ESV) testing, it proved to be a very effective method.

Build track datu file options
The build track data file options permit the user to build
either a regular or irregular Count Data (CD) or Count
Key Data (CKD) TDF. The regular CD or CKD TDFs
contain fields of the same length for all of the records on
the track. The irregular CD or CKD TDFs contain fields,
which differ in length, for each record on the track.

After selecting one of the build track data file options,
the user is prompted for a TDF file name. If a file name is
not specified, the “sim.dat” default file name is used.

The user is then prompted for a ranldom data-
generation decision. If the user wants random TDF data
to be generated, a “y” is typed after the prompt. With
random data generation, the content of each TDF is
unique.

If the user does not want a random TDF data pattern
to be used, but a fixed data pattern instead, an “n” is
typed after the prompt. With a fixed data pattern, each
TDF will be the same (except for the number of tracks).

The last thing that the user is prompted for is the
number of tracks. For TurboSim/DOS it is recommended
that a small number (1-10) of tracks be chosen for
simulation if the user does not use a hard-disk caching
program. The reason for this is that the TurboSim
application writes and reads several intermediate files
during the course of a simulation scenario. Therefore,
total simulation time is related to the total number of

626 tracks processed.

Track datu generation algorithm
The algorithm for generating the track information is
based upon the information contained in [7]. The space in
cells consumed by a record can be calculated via the
following equations:

Space = C + K f D ,

where C = 10, K depends upon the Key Length (KL) ,
and D depends upon the Data Length (DL). If KL = 0:
K = 0. If KL is not equal to 0,

KL + 6KN+ 6
34

K = 9 +

where KN = (KL + 6)/232. The number of cells used by
the data field is

DL + 6 D N + 6
34

D=9+-”----,

where DN = (DL + 6)/232. Both K and D are rounded
up to the nearest integer.

Run sirnulation scenario
A simulation scenario menu is provided to allow the user
to choose a specific simulation scenario for execution.
Several different simulation scenarios can be selected.
After the user has selected a simulation scenario, the TDF
and simulation log names for the scenario can be
specified. If the file names are not specified, the default
file name for the TDF will be “sim.dat” and the default
file name for the simulation log will be “sim.log”.

After the input and output file names have been
selected, the user can either accept or modify the standard
simulation scenario defaults. The specified simulation
scenario is then run. Figure 2 shows the data
transformations performed in a typical simulation scenario.

simulation scenario. It is used to build an internal
representation of the track data structure that is used by
node model 1.

The standard data transformation scenario consists of

The TDF information is processed at the beginning of a

two basic operations:

1. A format write operation is performed. During the
format write operation, a single track of data is written
to the direct access storage device (DASD).

2. A read track operation is performed. During the read
track operation, a single track of data is read from the
DASD. The standard data transformation scenario is
successful if the data received by node model 1 during
the read track operation are the same as the original
track data.

S. S. SOULT IBM J RES. DEVELOP. VOL. 40 NO. 6 NOVEMBER 1996

A total of ten transformations are performed on the data
as they move from node 1 to node 2 to node 3, to the
DASD, then back to node 3, back to node 2, and finally
back to node 1. The data perform a round trip as they
pass through transformation to transformation in a
counterclockwise direction. A total of ten different
transformations are performed on the data during the
round trip through the subsystem. If an error occurs
during the round trip, simulation is stopped, and an error
message is presented identifying the source of the error.

The results of the simulation session are written to the
simulation log file specified during session initialization.
After the simulation log file has been written, a “browse”
function is invoked automatically by the simulator to
browse the contents of the simulation log file.

Browse simulation file
The TurboSim browse simulation file feature can be used
to browse a simulation file created during the execution of
a simulation scenario. This feature is normally used to
view simulation logs. However, it can also be used to view
other text files, such as the TurboSim TDF files. These are
standard text files which can be browsed with no special
processing.

Model displays
The model display options are used to examine the
internal model data structures constructed during a
simulation scenario. The data structures which can be
displayed depend upon the specific simulation scenario
selected.

The contents of the various data structures are
preserved after a simulation session, so that they can be
examined. The data structures can be viewed by selecting
one of the options provided on a model display menu.

simulation session, the space that they consume is not
freed. However, the space would be freed automatically at
the beginning of a new simulation session if simulation
were to be run again.

Since the data structures are preserved after a

Data stream displays
This option is used to examine the data streams passed
between the nodes via the node connections. As in the
case of the model displays, the data streams which can be
displayed are dependent upon the specific simulation
scenario selected.

Save model data
This option is used to save the model data in a file for
future reference. In many cases it is important to be able
to analyze control-block information after a simulation
session has been completed.

IBM J. RES. DEVELOP. VOL. 40 NO. 6 NOVEMBER 1996

TurboSim input
track data file

(Subsystem boundary)

model

Stream mode
data file 1

x1
data file2 1
Stream mode

model

x3
Sector mode Sector mode 1
data file 1 data file 2 ~

model

x5 X6

1 Standard data transformation scenario.

The model data are saved in the form of STL files,
which can be used later to construct hardware verification
test cases. In addition, individual STL macros can be
generated from many of the TurboSim control-block
displays. When the user presses a function key from one
of the model control-block displays, an STL macro for the
currently displayed control block is generated and placed
in a user-specified file.

The control-block addresses generated by
TurboSimiAIX are unique to the IBM RSi6000
environment. Therefore, they must be replaced by
symbolic addresses, which can be converted to real
addresses by the STL translator. Because the STL
translator creates an addresddata map which can be
loaded into memory on the target hardware, it is
commonly referred to as the “mapper.”

Architectural verification
The principal focus of our architectural verification was to
ensure that the data transformations shown in Figure 2
(X1 through X10) were performed correctly. Although
specific numbers were not tracked, it is possible
to make some informal calculations related to the
comprehensiveness of the architectural verification. 627

s. s. SOULT

2,000 Average number of test cases per release per programmer per scenario
X 3 Number of principal scenarios run

6,000 Average number of test cases per release per programmer
X 3 Average number of TurboSim programmen

18,000 Average number of test cases per release
X 10 Number of TurboSim releases

""

180,000 Average number of test cases
X 10 Average number of data transformations per test case

1,800,000 Total number of data msformatiom
_""

i Data transformation calculations.
1

6 TurboSim input
track data file

Q TurboSim

STL macros with
symbolic addresses and 0 . ! .0 STL source files
fixed data patterns

1
Symbolic to real

data generation

Front end

Back end

Note:
The format of the test
cases depends upon 0 . .0 STL test cases
the target environment.

Overview of hardware verification support.

Most interesting is the number of data transformations
performed during the architectural verification process.

In the calculations shown in Figure 3, a test case is
considered to be the data for a single track contained
within a TDF. Test cases are typically run in batches of
500 each during TurboSim regression testing. Regression
testing is an essential aspect of the TurboSim release

628 process.

s. s. SOULT

These numbers give a sense of how comprehensive the
architectural verification was, using random test case
generation. In addition, the hardware test case writers
built TDFs by hand which stressed various boundary
conditions. These handcrafted test cases were very
effective in discovering boundary condition problems, both
within the architecture and in the hardware implementation.

Despite the fact that they are very coarse, the numbers
shown in Figure 3 are useful from an order-of-magnitude
perspective. They also demonstrate that the data
transformation part of the architecture was verified
very thoroughly.

Hardware verification
TurboSim provides support for hardware verification by
generating STL files. The process shown in Figure 4 is
used for hardware verification.

Hardware verification process
The hardware verification process is described in more
detail as follows:

1. The first step in the process is to build a TDF. To
stress important boundary conditions, the hardware test
case writers build handcrafted TDFs with the desired
track characteristics.

2. Next, a specific TurboSim simulation scenario is run.
The data structure and data file information generated
during the simulation scenario are used to generate the
STL source files.

3. Typically, a hardware test case writer then merges
several of the STL source files together and adds
additional test case header information. This enables
the mapper to build an STL test case suitable for
loading into the target environment.

In addition, a hardware test case writer can change
the content of an STL source file for error-injection
purposes. The ability to alter any bit within any field of
a data structure represents a very flexible and powerful
Fault INSertion (FINS) capability. FINS support is
essential to ensure that the hardware will handle error
conditions properly.

binary test case files that can be loaded into the target
environment. The mapper consists of a front end, which
is responsible for parsing the source files, and a back
end, which is responsible for building a binary test case
file for a specific target environment. Typically, there
are different mapper back ends for each target
environment. This is because different binary test case
file formats are normally required for different
environments.

4. The mapper is used to translate STL source files into

5. After the binary test case files have been generated,
they are loaded into the target environment. Normally,

IBM J . RES. DEVELOP. VOL. 40 NO. 6 NOVEMBER 1996

two different versions of the data structures are used by
a test case. Data structures containing initial values are
provided to place the hardware in an initial state. Data
structures containing final values are provided so that a
comparison can be made between the expected results
and the actual results produced by the hardware.

At present, the only paths which have been completed
and used are the path to the hardware simulation
environment and the path to the software simulation
environment.

STL test case production
Figure 5 shows the number of STL test cases written using
TurboSim during a 16-week period. Of the 322 STL test
cases written during that period, 284 ran successfully on
simulated hardware and were marked complete. This
exceeded the planned value of 220 STL test cases by a
comfortable margin. These numbers show that the use of
TurboSim STL ATG capabilities permitted the hardware
test case writers to exceed their plan.

However, what we found most interesting about the
introduction of the new STL ATG technology is how the
hardware test case writers utilized the extra time saved
through automation. Rather than using their extra time to
write test cases, as we had expected, they used it to help
the hardware designers debug the hardware. This
phenomenon is shown by the test cases "held by HIW"
curve in Figure 5.

In week 6, the number of test cases delayed by
hardware problems had reached 60. This situation
represented a tremendous crisis for the hardware
organization, because only one test case had passed at this
point in time. However, at this time the new TurboSim
STL ATG capabilities had reached the point where the
hardware test case writers could save a significant amount
of time in producing their weekly quota of test cases. They
used the extra time saved to contribute to the hardware
debug effort.

number of test cases delayed by hardware problems was
reduced to 41, and the number of test cases passed
increased to 26. As incremental improvements were made
in the TurboSim STL ATG capabilities, the hardware test
case writers spent less time writing test cases and more of
their time in the hardware debug effort. This is evidenced
by the fact that the number of test cases delayed by
hardware continued to decrease from week 7 to week 14
and then remained constant at nine test cases, a very low
number.

By the next week, the results were already evident. The

Conclusions
Simulation has proved to be an excellent technique for
uncovering architectural-level problems before they are

IBM J. RES. DEVELOP. VOL. 40 NO. 6 NOVEMBER 1996

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6
Time (weeks)

'+ Number of STL test cases generated in a 16-week period using
TurboSim: Curve A, plan; Curve B, written; Curve C, complete;
Curve D, held by H/W.

propagated into the design. At the time this paper was
written, 24 significant problems with the architecture had
been discovered by the TurboSim team. These problems
were not discovered through use of traditional techniques,
such as detailed document reviews and inspections.

Two architectural problems were discovered when the
TurboSim models were used to build hardware verification
test cases. Since the architectural verification process is an
ongoing activity, it is anticipated that a small number of
problems will continue to be found. However, the ongoing
rate of problem discovery has been far less than in the
initial architectural verification stages.

A summary of the problems found with TurboSim is
provided below:

Problem type:
Architectural = 12
Documentation = 12

Problem disposition:
Resolved = 18
Dropped = 5
Pending = 1

In addition, we determined that it was practical to use
architectural-level models for generating hardware test

S. S. SOULT

629

cases. When an ATG capability for constructing hardware
test cases is available, the hardware organization can
spend more time testing and debugging the hardware.
Removing both architectural-level and hardware design
problems very early in the design cycle has significantly
reduced the advanced storage controller subsystem
development cost, improved the product development
schedule, and will result in a much higher-quality product
being delivered to our customers.

Acknowledgments
The author would like to thank James Brady for his
support and assistance throughout the duration of the
TurboSim project. Without his foresight and vision, the
TurboSim project would never have been launched. In
addition, without his assistance the construction of the
architectural-level models would not have been possible.
The author would also like to acknowledge the
contributions made by the members of the TurboSim
team. The principal contributors to the TurboSim project
were Peter Baiko, Ken Brown, Kevin Bui, Anthony
Cascella, Larry Garibay, Gene Hopp, Charlotte Hsieh,
A1 Rogers, Calvin Tang, and Mai Tran.

AIX is a registered trademark, and RSi6000 is a trademark, of
International Business Machines Corporation.

References
1.

2.

3.

4.

5.

6.

7.

F. P. Brooks, The Mythical Man-Month: Essays on Software
Engineering, Addison-Wesley Publishing Co., Reading, MA,
1982, p. 44.
F. D. Smith and C. H. West, “Technologies for Network
Architecture and Implementation,” IBM J . Res. Develop. 27,

B. Stroustrup, “A History of C+ +: 1979-1991,” ACM
SIGPLAN Notices 28, No. 3, 272 (March 1993).
S. B. Lippman, C++ Primer 2nd Edition, Addison-Wesley
Publishing Co., Reading, MA, 1991, pp. 215-221.
Systems Application Architecture Common User Access Basic
Interface Design Guide, SC26-4583-0, First Edition
(December 1989), Chapter 4.
J. H. Cross, K. Chang, W. H. Carlisle, and D. B. Brown,
“Expert System Assisted Test Data Generation for
Software Branch Coverage,” Data & Knowledge Eng. 6, 281
(1991).
IBM 3390 Direct Access Storage Reference Summary,
(3x26-4577-03, Fourth Edition (September 1991), p. 3.

68-78 (1983).

Received March 10, 1995; accepted for publication
August 9, 1996

630

s. s. SOULT

Steven s. Soult Abbott Laboratories, Abbott Critical Care
Systems Division, 1212 Terra Bella Avenue, Mountain View,
California 94043 (ssoult@abbotthpd.com). At IBM, Mr. Soult
was the technical team leader of the TurboSim development
team in San Jose. His research at IBM involved the
development of high-performance simulation environments
for architectural, hardware, and microcode verification. His
interests also included the management of high-performance
technical teams. He received an IBM Outstanding Technical
Achievement Award for his work on the TurboSim project.
Mr. Soult received a B.S. in electrical engineering from Santa
Clara University in 1971. After serving four years as an officer
in the United States Navy, he returned to graduate school
and received an M.S. in electrical engineering and computer
science from the University of California at Berkeley in 1978.
Later, while working full-time at IBM, he received an M.B.A.
degree in management from Santa Clara University in 1988.
He is a member of the IEEE Computer Society.

1BM J. RES. DEVELOP. VOL. 40 NO. 6 NOVEMBER 1996

