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The architectural complexity of  advanced 
storage controllers has increased to a point  at 
which architectural verification methods based 
on document inspections and reviews are no 
longer effective.  To facilitate the architectural 
verification process, a high-performance 
simulator (TurboSim) has been  developed for 
architectural-level verification. The  TurboSim 
application includes a set of architectural- 
level models, which represent essential 
architectural components, and an automatic 
test case generator (ATG).  The TurboSim ATG 
is used to generate realistic representations of 
customer direct access storage device (DASD) 
track data.  The track data are used to drive 
different TurboSim simulation scenarios. 
After demonstrating its effectiveness as  an 
architectural verification tool, TurboSim  was 
enhanced to support  the automatic generation 
of hardware test cases.  These hardware test 
cases  are used to ensure that  the hardware 
implementation matches architectural 
specifications. 

Introduction: The architectural development 
and verification process 
An essential  aspect of the advanced storage  controller 
architectural  development  and verification process is 

architectural verification. The overall process is shown 
schematically  in Figure 1. The individual steps  required 
are  described in the following subsections. 

Initial  draft 
The  development of an  advanced  storage  controller 
subsystem architecture is initiated by a small group of 
developers  that  has  been  organized as an  architectural 
team.  The  team develops an initial draft of the 
architecture  under  the  direct supervision of a chief 
architect, who is responsible  for  the overall  design and 
implementation of the  architecture. He is responsible  for 
ensuring  that  the  members of the  architectural  team 
convert  the  architectural  concepts  into  prose  descriptions 
that  are  clear, concise, and  accurate. 

The chief architect must ensure  that  the  architecture is 
unified and possesses conceptual integrity. The  importance 
of maintaining  the  conceptual integrity of an  architecture 
is discussed by Brooks [l], who states  that  “Conceptual 
integrity in turn  dictates  that  the design must  proceed 
from  one mind, or  from  a very small number of agreeing 
resonant minds.” 

Architectural revision 
The initial draft of the  architecture is taken  through 
several iterations by the  architectural  team as it is refined. 
The initial development of an advanced storage  controller 
subsystem architecture can take several months to 
complete. 
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1 Architectural development and verification process. 

Architectural review 
After  the  architectural  team  completes  the  initial  draft of 
the  architecture, it is made available for  general review. 
A formal  document review is used to uncover problems 
in the initial draft,  and  these  are resolved by the 
architectural  team  during  the  development of the 
final draft of the  architecture. 

After  the final draft is completed, a formal  acceptance 
review is conducted,  and any remaining  problems  are 
addressed  before  the first edition of the  architecture is 
published.  The  document is placed under  formal  change 
control  after  the first edition is published. 

Formal change requests 
After  the  architecture is placed under  formal  change 
control, a Formal  Change  Request  (FCR)  process is used 
for all functional  changes  to  the  architecture.  Advantages 

the  FCR  process  include  the following: 

The  FCR  process  tends  to  eliminate  misunderstandings 
and  misinterpretations of the  architecture by people 
outside  the  core  architectural  development  team.  This 
reduces  the  number of problems  written against the 
architecture. 
FCRs  are  placed  on a system conference disk that is 
easily accessible by all advanced storage  controller 624 
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project  developers.  This  ensures  that  they  are  kept 
informed of proposed  architectural  changes. 

3. The  FCR  process provides an  opportunity  for qualified 
commentators  other  than  the  members of the 
architectural  team  to  participate in the  development, 
review, and  enhancement of the  architecture. 

4. The  FCR process also provides  a means  for processing 
the  FCRs by the Design and Review Team  (DART) in 
a  timely manner.  The  DART is a  small independent 
group of individuals who  need  not  be  members of the 
architectural  team. 

Architectural verification 
After  the initial draft of the  architecture is completed 
by the  architectural  team,  the  architecture is verified. 
Because of the  tremendous complexity of recent  advanced 
storage  controller subsystem architectures,  traditional 
document  inspection  and review methods  are  inadequate 
for  architectural verification. For example, some of the 
subsystem data  transformations  are so complex that it is 
no  longer  practical  to  check  them by hand. 

One  approach  to solving the  problem of checking very 
complex architectures is to build  a set of software  models 
of the  architecture  and  then  execute  them.  The  principal 
purpose  behind  the  development of the  TurboSim 
application was to provide a simulation  environment 
for  models  written  at  the  architectural level. 

A  similar approach  had  been used  previously for  the 
development of the Systems  Network Architecture  (SNA). 
Smith  and  West'  found  that  the  direct  implementation of 
an  architecture solves two important  problems [2]: 

1. It  determines what constitutes  an  implementation of 

2. It can be used to  test  whether a particular 
the  architecture. 

implementation complies with the  architecture. 

Hardware design and implementation 
As  essential  elements of the  architecture  are verified, the 
hardware design and  implementation  can  proceed.  With 
careful  planning  and  prioritization,  the verification,  design, 
and  implementation  can  proceed as parallel activities, 
rather  than  being  done sequentially. 

are  written  and  presented  to  the  DART.  FCRs  that  are 
accepted by the  DART  are  incorporated  into  the 
architecture  and  then reviewed and verified  as part of the 
TurboSim modeling effort. 

When  problems  are  found with the  architecture,  FCRs 

1 One of the  principal  dlffcrences  between the approach  taken by Smith and West 
and ours is that they used a special language,  the  Format And Protocol  Language 
(FAPL), to write their models. Rather  than using a specialized modeling language, 
we decided to use a  modern  Ob~ect-Oriented  Programming  (OOP)  language, 
C + + ,  to write our models. One of the  advantages  of using C++ as  a  modeling 
language I S  that i t  provides opportunitles  for  code  reuse  during  the  development of 
product  microcode. 
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Hardware ver$cation 
To  ensure  that  the  hardware  implementation is correct, 
a means must be provided to  compare  the  results of 
architectural  simulation with the  results  produced by the 
hardware.  We accomplished  this by enhancing  the 
TurboSim  models  to  support  the  automatic  generation of 
Subsystem Test  case Language (STL)  hardware  test cases. 
By using the  architectural-level  models  for  hardware  test 
case  generation, we discovered not only hardware 
implementation  problems but some  architectural  problems 
as well. The types of architectural  problems  found  during 
this  phase  tended  to  be  related  to ambiguous, incomplete, 
or missing parts of the  architecture. 

Overview of  TurboSim 

Characteristics 
TurboSim is a high-performance  simulator designed 
primarily for  architectural verification. There  are two 
different versions of TurboSim, which run  under  different 
operating systems and on different  hardware platforms: 

TurboSimiDOS  runs  under  DOS  on  an  IBM  Personal 
Computer  (PC); it is used  primarily for  code 
development,  architectural verification, and  education 
and  training  purposes. 
TurboSimiAIX  runs  under  AIX@  on an IBM RSi600OTM 
server.  TurboSimiAIX is used for essentially the  same 
purposes as TurboSimiDOS,  but in addition it is used 
by the  hardware  test case writers  for  STL  test  case 
generation.  The  STL  test cases  have been  used primarily 
for  hardware verification.  However,  they  have also  been 
used in  a  limited way for  software verification. 

The  TurboSim  code is written in the   C++  programming 
language, which is an excellent language  for  constructing 
simulation models. During  the  development of C +  +, 
Bjarne  Stroustrup  relied heavily on his prior  experience in 
building  a simulator while he was at  Cambridge [3]. 
Therefore,  the  C+ + programming  language  has many 
attributes  and  features  that  make it an excellent  choice for 
building the  TurboSim models. 

The  data  structures  described in the  architecture have 
been  constructed as  accurately as possible, and have been 
implemented as C + +  classes’ in order to take full 
advantage of Object-Oriented  Programming (OOP) 
techniques. 

A  simple user  interface technology enables  the 
TurboSim  application to be ported across different 
operating systems. The  different  TurboSim  ports  use  the 
same  User  Interface  (UI) technology and have the  same 

A C + +  “class” is a  language  construct  which  allows  the  programmer  to 
encapsulate  data  members  and  the  member  functions  (or  methods)  that  operate  on 
the  data A good  introduction  to C + +  classes  can  be  found  in [4]. 

operational  characteristics.  The  TurboSim  user  interface 
conforms  to  the  entry  model guidelines  specified in [5]. 

contained in TurboSim  track  data files (TDFs).  Each  track 
of data  contained within  a TDF is considered  to  be a test 
case.  TDFs  are normally generated within TurboSim. If 
desired, they can  be  edited with  a standard text editor. 
The ability to  generate  TDFs  automatically  and  then  use 
them  to  run  simulation  scenarios  represents a very 
powerful Automatic  Test  case  Generation  (ATG) 
capability. 

Customer  data  are  represented by data  patterns 

The  TurboSim  application  supports  both  batch  and 
interactive  modes of operation.  The  default  mode of 
operation is the  interactive  mode.  To  run  the  application 
in batch  mode, a batch flag command-line  argument is 
specified by the  user.  The  TurboSim  application  command 
line  arguments  are as follows: 

The Flag command-line  argument is optional  and is used 
to specify the  program  mode of operation.  The  various 
modes of operations  are  batch  (background),  debug,  and 
interactive  (foreground). 

be used. This file must be in  a specific format to be 
recognized by the  program.  The TrkFile argument must 
be specified if a LogFile argument is to be specified. 

simulation log file to be  used. If the LogFile argument is 
not specified, the  name of the simulation log file will be 
constructed  from  the  TDF  name. 

The TrkFile argument specifies the  name of the  TDF  to 

The LogFile argument specifies the  name of the 

The TrkFile and LogFile arguments  are normally  specified 
for batch jobs. This  permits  the user to  use  different file 
names  for batch jobs which are  run consecutively. 
However, the TrkFile and LogFile arguments  can  be 
specified for  the  other  modes of operation.  The  arguments 
then specify the  default  names used  in the  menus  for  the 
TDF  and  simulation log files. 

sensitive help, including some of the  information 
contained in the  TurboSim User’s Guide, which can 
be  either  be viewed on-line  or  printed. 

Most of the  TurboSim  menus  and displays  have context- 

TurboSim features 
The  TurboSim primary menu lists options in the  sequence 
that a  user would normally follow when  using the 
TurboSim  application: 

1. Build a track  data file. 
2. Run a specific simulation  scenario. 
3. Examine  the  results of the  simulation  scenario. 
4. If desired, build STL  test cases. 



These  features  are  more  completely  described in the 
following  subsections. 

Build track data file 
The  “build  track  data file” feature is used to build a  TDF. 
The  TDF  contains  the  track  information normally 
transferred  to  the subsystem by the system via the  channel 
interface.  The TDF information is required  to  run  a 
TurboSim simulation scenario. Since TDFs must conform 
to  a specific format in order  to  be recognized by the 
simulator,  users  should always use  the  TurboSim build 
track  data file feature  to  construct  an initial  version of a 
TDF.  After  a  TDF  has  been  constructed, it  can be 
modified  with an  ordinary text editor. 

To  stress  certain  boundary  conditions within the 
architecture, it is essential  to  be  able  to build  specialized 
TDFs by hand.  Handcrafted  TDFs have been very 
effective in uncovering architectural problems. This finding 
is in accordance with work done by Cross et al. [6] ,  who 
concluded  that  random  testing by itself was not  adequate 
for exposing errors. However,  when  it was combined with 
boundary  and special  value (error statistics by volume, or 
ESV) testing,  it  proved to  be  a very effective method. 

Build track datu file options 
The build track  data file options  permit  the  user  to build 
either  a  regular  or  irregular  Count  Data  (CD)  or  Count 
Key Data  (CKD)  TDF.  The  regular  CD  or  CKD  TDFs 
contain fields of the  same  length  for all of the  records  on 
the  track.  The  irregular  CD  or  CKD  TDFs  contain fields, 
which differ in length,  for  each  record  on  the  track. 

After selecting one of the build track  data file options, 
the user is prompted  for  a  TDF file name. If a file name is 
not specified, the  “sim.dat”  default file name is used. 

The user is then  prompted  for  a ranldom data- 
generation decision. If the  user wants random  TDF  data 
to  be  generated,  a “y” is typed after  the  prompt.  With 
random  data  generation,  the  content of each TDF is 
unique. 

If the user does  not  want  a  random  TDF  data  pattern 
to  be used, but  a fixed data  pattern  instead, an “n” is 
typed after  the  prompt.  With  a fixed data  pattern,  each 
TDF will be  the  same (except for  the  number of tracks). 

The last  thing that  the  user is prompted  for is the 
number of tracks.  For  TurboSim/DOS it is recommended 
that  a small number (1-10) of tracks  be  chosen  for 
simulation if the  user  does  not  use  a  hard-disk caching 
program.  The  reason  for  this is that  the  TurboSim 
application writes and  reads several intermediate files 
during  the  course of a  simulation  scenario.  Therefore, 
total simulation time is related  to  the  total  number of 

626 tracks  processed. 

Track datu generation algorithm 
The  algorithm  for  generating  the  track  information is 
based  upon  the  information  contained in [7]. The  space in 
cells consumed by a  record  can  be  calculated via the 
following equations: 

Space = C + K f D ,  

where C = 10, K depends  upon  the Key Length (KL) ,  
and D depends  upon  the  Data  Length (DL).  If KL = 0: 
K = 0. If KL is not  equal  to 0, 

KL + 6KN+ 6 
34 

K = 9 +  

where KN = (KL + 6)/232. The  number of cells  used by 
the  data field is 

DL + 6 D N +  6 
34 

D=9+-”----, 

where DN = (DL + 6)/232. Both K and D are  rounded 
up  to  the  nearest  integer. 

Run sirnulation scenario 
A simulation  scenario  menu is provided  to allow the  user 
to  choose  a specific simulation  scenario  for execution. 
Several different simulation scenarios  can  be  selected. 
After  the  user  has  selected  a  simulation  scenario,  the  TDF 
and  simulation log names  for  the  scenario  can  be 
specified. If the file names  are  not specified, the  default 
file name  for  the  TDF will be “sim.dat” and  the  default 
file name  for  the  simulation log will be “sim.log”. 

After  the  input  and  output file names have been 
selected,  the user can  either  accept  or modify the  standard 
simulation  scenario  defaults.  The specified simulation 
scenario is then  run. Figure 2 shows the  data 
transformations  performed in a typical simulation scenario. 

simulation  scenario.  It is used to build an  internal 
representation of the  track  data  structure  that is used by 
node  model 1. 

The  standard  data  transformation  scenario consists of 

The  TDF  information is processed  at  the beginning of a 

two basic operations: 

1. A  format  write  operation is performed.  During  the 
format  write  operation,  a single track of data is written 
to  the  direct access storage device (DASD). 

2. A  read  track  operation is performed.  During  the  read 
track  operation,  a single track of data is read  from  the 
DASD.  The  standard  data  transformation  scenario is 
successful if the  data received by node  model 1 during 
the  read  track  operation  are  the  same as the original 
track  data. 
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A total of ten  transformations  are  performed  on  the  data 
as they move from  node 1 to  node 2 to  node 3, to  the 
DASD,  then back to  node 3, back to  node 2, and finally 
back to  node 1. The  data  perform a round  trip  as  they 
pass through  transformation  to  transformation in  a 
counterclockwise direction. A total of ten  different 
transformations  are  performed  on  the  data  during  the 
round  trip  through  the subsystem. If an  error occurs 
during  the  round  trip, simulation is stopped,  and  an  error 
message is presented identifying the  source of the  error. 

The  results of the  simulation session are  written  to  the 
simulation log file specified during session  initialization. 
After  the  simulation log file has  been  written, a “browse” 
function is invoked  automatically by the  simulator  to 
browse the  contents of the  simulation log file. 

Browse simulation file 
The  TurboSim browse  simulation file feature  can  be used 
to browse  a simulation file created  during  the execution of 
a simulation  scenario.  This  feature is normally used  to 
view simulation logs. However,  it can also be  used  to view 
other text files, such as  the  TurboSim  TDF files. These  are 
standard text files which can  be browsed with no special 
processing. 

Model displays 
The  model display options  are used to examine the 
internal  model  data  structures  constructed  during a 
simulation  scenario.  The  data  structures which can  be 
displayed depend  upon  the specific simulation  scenario 
selected. 

The  contents of the  various  data  structures  are 
preserved  after a  simulation  session, so that they can  be 
examined. The  data  structures  can  be viewed by selecting 
one of the  options provided on a model display menu. 

simulation session, the  space  that they consume is not 
freed. However, the  space would be  freed automatically at 
the beginning of a new simulation  session if simulation 
were  to  be  run again. 

Since the  data  structures  are  preserved  after a 

Data  stream displays 
This  option is used to examine the  data  streams passed 
between  the  nodes via the  node  connections. As in the 
case of the  model displays, the  data  streams which can  be 
displayed are  dependent  upon  the specific simulation 
scenario  selected. 

Save  model data 
This  option is used to save the  model  data in  a file for 
future  reference.  In many cases  it is important  to  be  able 
to analyze control-block  information  after a simulation 
session has  been  completed. 
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1 Standard data transformation scenario. 

The  model  data  are saved  in the  form of STL files, 
which can  be used later  to  construct  hardware verification 
test cases. In  addition, individual STL  macros  can  be 
generated  from many of the  TurboSim  control-block 
displays. When  the user presses a function key from  one 
of the  model  control-block displays, an  STL  macro  for  the 
currently displayed control block is generated  and placed 
in a  user-specified file. 

The  control-block  addresses  generated by 
TurboSimiAIX  are  unique  to  the IBM RSi6000 
environment.  Therefore, they  must be  replaced by 
symbolic addresses, which can  be  converted  to real 
addresses by the  STL  translator. Because the  STL 
translator  creates  an  addresddata  map which can  be 
loaded  into memory on  the  target  hardware, it is 
commonly referred  to  as  the  “mapper.” 

Architectural  verification 
The principal  focus of our  architectural verification  was to 
ensure  that  the  data  transformations shown  in Figure 2 
(X1 through X10) were  performed correctly. Although 
specific numbers  were  not  tracked, it is possible 
to  make  some  informal  calculations  related  to  the 
comprehensiveness of the  architectural verification. 627 
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2,000 Average  number of test  cases  per  release  per  programmer  per  scenario 
X 3 Number of principal  scenarios  run 

6,000 Average  number of test  cases  per  release  per  programmer 
X 3 Average  number of TurboSim  programmen 

18,000 Average  number of test cases per  release 
X 10  Number  of  TurboSim  releases 

"" 

180,000 Average  number of test  cases 
X 10  Average  number of data  transformations per test  case 

1,800,000 Total  number of data msformatiom 
_"" 

i Data  transformation  calculations. 
1 

6 TurboSim  input 
track data file 

Q TurboSim 

STL macros  with 
symbolic addresses and 0 . ! .0 STL source files 
fixed data patterns 

1 
Symbolic to real 

data generation 

Front end 

Back end 

Note: 
The format of the test 
cases depends upon 0 . .0 STL  test cases 
the target environment. 

Overview  of  hardware  verification support. 

Most interesting is the  number of data  transformations 
performed  during  the  architectural verification  process. 

In  the  calculations shown  in Figure 3, a test  case is 
considered  to  be  the  data  for a  single track  contained 
within  a TDF.  Test  cases  are typically run in batches of 
500 each  during  TurboSim regression  testing. Regression 
testing is an  essential  aspect of the  TurboSim  release 

628 process. 
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These  numbers give a sense of how comprehensive  the 
architectural verification was, using random  test  case 
generation.  In  addition,  the  hardware  test  case  writers 
built TDFs by hand which stressed  various  boundary 
conditions.  These  handcrafted  test  cases  were very 
effective  in  discovering boundary  condition  problems,  both 
within the architecture and in the hardware  implementation. 

Despite  the  fact  that  they  are very coarse,  the  numbers 
shown in Figure 3 are useful from  an  order-of-magnitude 
perspective.  They  also demonstrate  that  the  data 
transformation  part of the  architecture was verified 
very thoroughly. 

Hardware verification 
TurboSim provides support  for  hardware verification by 
generating  STL files. The  process shown  in Figure 4 is 
used for  hardware verification. 

Hardware  verification process 
The  hardware verification  process is described in more 
detail  as follows: 

1. The first step in the  process is to build  a TDF.  To 
stress  important  boundary  conditions,  the  hardware  test 
case  writers build handcrafted  TDFs with the  desired 
track  characteristics. 

2. Next,  a specific TurboSim simulation scenario is run. 
The  data  structure  and  data file information  generated 
during  the simulation scenario  are  used  to  generate  the 
STL  source files. 

3. Typically, a hardware  test  case  writer  then  merges 
several of the  STL  source files together  and  adds 
additional  test  case  header  information.  This  enables 
the  mapper to build an  STL  test  case  suitable  for 
loading into  the  target  environment. 

In  addition, a hardware  test  case  writer can change 
the  content of an  STL  source file for  error-injection 
purposes.  The ability to  alter any bit within any field of 
a data  structure  represents a very flexible and powerful 
Fault  INSertion  (FINS) capability. FINS  support is 
essential  to  ensure  that  the  hardware will handle  error 
conditions properly. 

binary test  case files that  can  be  loaded  into  the  target 
environment.  The  mapper consists of a front  end, which 
is responsible  for  parsing  the  source files, and a  back 
end, which is responsible  for building  a  binary test  case 
file for a specific target  environment. Typically, there 
are  different  mapper back ends  for  each  target 
environment.  This is because  different binary test  case 
file formats  are normally required  for  different 
environments. 

4. The  mapper is used to  translate  STL  source files into 

5. After  the binary test  case files have been  generated, 
they are  loaded  into  the  target  environment. Normally, 
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two different versions of the  data  structures  are used by 
a  test case. Data  structures  containing initial  values are 
provided to place the  hardware in an initial state.  Data 
structures  containing final values are  provided so that  a 
comparison  can  be  made  between  the  expected  results 
and  the  actual  results  produced by the  hardware. 

At  present,  the only paths which have been  completed 
and used are  the  path  to  the  hardware  simulation 
environment  and  the  path  to  the  software  simulation 
environment. 

STL test case production 
Figure 5 shows the  number of STL  test  cases  written using 
TurboSim  during a 16-week period. Of the 322 STL  test 
cases written  during  that  period, 284 ran successfully on 
simulated  hardware  and  were  marked  complete.  This 
exceeded  the  planned value of  220 STL  test cases by a 
comfortable margin. These  numbers show that  the use of 
TurboSim  STL  ATG capabilities permitted  the  hardware 
test  case  writers  to exceed their  plan. 

However,  what we found most interesting  about  the 
introduction of the new STL  ATG technology is how the 
hardware  test  case  writers utilized the  extra  time saved 
through  automation.  Rather  than using their  extra  time  to 
write  test cases,  as we had  expected, they  used it to  help 
the  hardware  designers  debug  the  hardware.  This 
phenomenon is shown by the  test cases  "held by HIW" 
curve  in Figure 5. 

In week 6, the  number of test  cases delayed by 
hardware  problems  had  reached 60. This  situation 
represented  a  tremendous crisis for  the  hardware 
organization,  because only one  test  case  had passed at this 
point in time. However, at this time  the new TurboSim 
STL  ATG  capabilities had reached  the  point  where  the 
hardware  test  case  writers could  save a significant amount 
of time in producing  their weekly quota of test cases. They 
used the  extra  time saved to  contribute  to  the  hardware 
debug  effort. 

number of test  cases delayed by hardware  problems was 
reduced  to 41, and  the  number of test cases  passed 
increased  to 26. As incremental  improvements  were  made 
in the  TurboSim  STL  ATG capabilities, the  hardware  test 
case writers spent less time writing test cases and  more  of 
their  time in the  hardware  debug  effort.  This is evidenced 
by the fact that  the  number of test  cases delayed by 
hardware  continued  to  decrease  from week 7 to week  14 
and  then  remained  constant  at  nine  test cases, a very low 
number. 

By the next week, the  results  were  already  evident.  The 

Conclusions 
Simulation  has  proved  to  be  an excellent technique  for 
uncovering architectural-level  problems  before they are 
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'+ Number of STL test cases generated in a 16-week period using 
TurboSim: Curve A, plan; Curve B, written; Curve  C, complete; 
Curve D, held by H/W. 

propagated  into  the design. At  the  time this paper was 
written, 24 significant problems with the  architecture  had 
been discovered by the  TurboSim  team.  These  problems 
were  not discovered through use of traditional  techniques, 
such  as detailed  document reviews and inspections. 

Two architectural  problems were  discovered  when the 
TurboSim  models  were used to build hardware verification 
test cases.  Since the  architectural verification process is an 
ongoing activity, it is anticipated  that  a small number of 
problems will continue  to  be  found. However, the ongoing 
rate of problem discovery has  been  far less than in the 
initial architectural verification  stages. 

A  summary of the  problems  found with TurboSim is 
provided below: 

Problem type: 
Architectural = 12 
Documentation = 12 

Problem  disposition: 
Resolved = 18 
Dropped = 5 
Pending = 1 

In  addition, we determined  that it was practical  to  use 
architectural-level  models  for  generating  hardware  test 
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cases.  When an ATG capability  for  constructing  hardware 
test  cases  is  available,  the  hardware  organization  can 
spend  more  time  testing  and  debugging  the  hardware. 
Removing  both  architectural-level  and  hardware  design 
problems very early in the  design cycle has  significantly 
reduced  the  advanced  storage  controller  subsystem 
development  cost,  improved  the  product  development 
schedule,  and will result  in a much  higher-quality  product 
being  delivered  to  our  customers. 
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